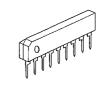
DUAL LOW VOLTAGE POWER AMPLIFIER

New Japan Radio Co., Ltd.

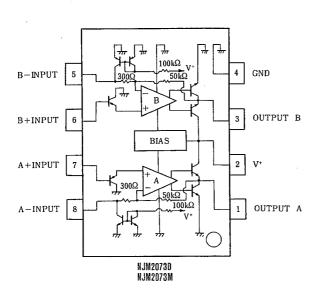
GENERAL DESCRIPTION

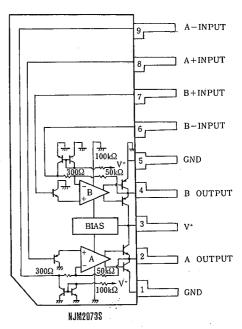
The NJM2073 is a monolithic integrated circuit in 8 lead dual-inline package, which is designed for dual audio power amplifier in portable radio and handy cassette player.


FEATURES

JRC

- Operating Voltage
- Low Crossover Distortion
- Low Operating Current
- Bridge or Stereo Configuration
- No Turn-on Noise
- Package Outline
- Bipolar Technology


 $V^{+}=1.8 \sim 15V$


DIP8, DMP8, SIP9

PIN CONFIGURATION

5

NJM 2073 D

NJM 2073 M

------5-35

ABSOLUTE MAXIMUM RAT		(Ta=25°C)	
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	.15	v
Output Peak Current	Тор	1	А
Power Dissipation	Po	(DIP8) 700	
		(SIP9) 700	mW
		(DMP8) 300	
Input Voltage Range	Vin	±0.4	. V
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tsig _	-40~+125	C

ELECTRICAL CHARACTERISTICS

(1) BTL Configuration (Test Circuit Fig. 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	ТҮР.	MAX.	UNIT
Operating Voltage	V+		1.8	—	15	v
Operating Current	lcc	$R_{L} = \infty$	—	6	9	mA
Output Offset Voltage	ΔVo	$R_{L} = 8\Omega$	<u> </u>	10	50	mV
(Between the Outputs)				-		
Input Bias Current	lB		—	100	—	nA
Output Power		THD=10%, $f=1kHz$			ļ	
- · · •	Po	$V^+=9V$, $R_L=16\Omega$ (Note)	—	2.0	—	W
	Po	$V^+=6V$, $R_L=8\Omega$ (Note)	0.9	1.2	—	W
	Po	$V^{+}=4.5V, R_{L}=8\Omega$	—	0.6		W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$ (Note)		0.8	-	W
	Po ·	$V^+=3V, R_L=4\Omega$	200	300	—	mW
	Po	$V^+=2V, R_L=4\Omega$		80	-	mW
		THD=1%, f=40kHz~15kHz				
	Po	$V^+=6V, R_L=8\Omega$	—	1.0	1 —	w
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	0.6	-	W
Total Harmonic Distortion	THD	$P_0 = 0.5W$; $R_L = 8\Omega$, $f = 1 \text{ kHz}$		0.2		%
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	ZIN	f=1kHz	100	—		kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_s = 10k\Omega$, A Curve	-	2		μV
	V _{NI} 2	$R_s = 10k\Omega$, $B = 22Hz - 22kHz$	—	2.5		μV
Ripple Rejection	RR	f=100Hz		40	-	dB
Cutoff Frequency	f _H	$A_v = -3dB$ from $f = 1kHz$, $R_L = 8\Omega$, $P_0 = 1W$		130	-	kHz

(V⁺=6V, Ta=25°C)

(Note) At on PC Board

5-36-

-New Japan Radio Co.,Ltd.-

(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V*		1.8	_	15	v
Output Voltage	Vo		-	2.7	. —	v
Operating Current	lcc	$R_{L} = \infty$	_ · _ ·	6	9	mA
Input Bias Current	1 _B		—	100		nA
Output Power (Each Channel)		THD=10%, $f=1kHz$				
	Po	$V^+=6V, R_L=4\Omega$ (Note)	0.5	0.65		W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	0.32		W
	Po	$V^{+}=3V, R_{L}=4\Omega$	-	120	·	mW
	Po	$V^{+}=2V, R_{L}=4\Omega$	-	30	—	mW
		THD=1%, f=1kHz				
	Po	$V^+=6V, R_L=4\Omega$		500	-	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	250		mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$	-	0.25		%
Voltage Gain	Av	f=1kHz	41	44	47	dB
Channel Balance	ΔA_V				±1	dB
Input Impedance	ZIN	f=1kHz	100.	-	-	kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_s = 10k\Omega$, A Curve	—	2.5	-	μV
	V _{NI} 2	$R_s = 10k\Omega$, $B = 22Hz \sim 22kHz$	-	3		μV
Ripple Rejection	RR	$f = 100 Hz, C_X = 100 \mu F$	24	30	-	dB
Cutoff Frequency	fH	$A_V = -3dB$ from f=1kHz	-	200		kHz
		$R_L = 8\Omega, P_O = 250 \text{mW}$				

(Note) At on PC Board

■ ELECTRICAL CHARACTERISTICS M-Type

(1) BTL Configuration (Test Circuit Fig. 1)

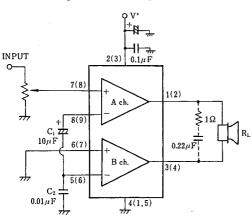
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V*		1.8	_	15	v
Operating Current	Ice	$R_{1} = \infty$		6	9-	mA
Output Offset Voltage (Between the Outputs)	ΔV_{O}	$R_L = 8\Omega$	_	10	50	mν
Input Bias Current	I _B			100	-	nA
Output Power		THD=10%, $f=1kHz$				
	Po	$V^+=6V, R_1=16\Omega$ (Note)		0.8	-	w
	Po	$V^+=4V, R_L=8\Omega$ (Note)	350	460		mW
	Po	$V^{\dagger} = 3V, R_{1} = 4\Omega$ (Note)	200	300		mW
	Po	$V^{\dagger} = 2V, R_{L} = 4\Omega$	· ·	80	-	mW
	-	THD=1%, f=40Hz~15kHz				
	Po	$V^+=4V, R_1=8\Omega$	<u> </u>	380	-	mW
Total Harmonic Distortion	THD	$V^+=4V, R_{t}=8\Omega, P_{O}=200mW, f=1kHz$	- ·	0.2	1 —	% .
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	ZIN	f=1kHz	100	- 1	_	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_s = 10k\Omega$, A Curve	-	2		μν
	V _{NI2}	$R_s = 10k\Omega$, $B = 22Hz \sim 22kHz$	_	2.5		μV
Ripple Rejection	RR	f = 100Hz	_	40	—	dB
Cutoff Frequency	նյ	$A_{\rm V} = -3 dB$ from f = 1kHz,	_	130	_	kHz
		$R_{L} = 16\Omega, P_{O} = 0.5W$				

(Note) At on PC Board

5

(V⁺=6V, Ta=25℃)

-New Japan Radio Co.,Ltd.-


(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺		1.8		15	v
Output Voltage	V _o		_	2.7		V
Operating Current	lee	$R_{1} = \infty$		6	9	mA
Input Bias Current	I _B			100 .	- 1	nA
Output Power (Each Channel)		THD = 10%, f=1kHz				
	Po	$V^{+}=6V, R_{1}=16\Omega$	-	240		mW
	Po	$V^* = 5V, R_1 = 8\Omega$ (Note)	-	270		mW
	Po	$V^4 = 4V, R_1 = 4\Omega$ (Note)	180	250	-	mW
	Po	$V^{\dagger}=3V, R_{1}=4\Omega$	-	120	—	mW
	Po	$V^+=2V, R_L=4\Omega$	-	30	—	mW
		THD = 1%, $f = 1 kHz$				
	Po	$V^+=4V, R_1=4\Omega$	—	180	-	mW
Total Harmonic Distortion	THD	$V^* = 4V, R_1 = 4\Omega, P_0 = 150mW, f = 1kHz$	-	0.25	-	%
Voltage Gain	Av	f = 1 k l l z	41	-14	47	dB
Channel Balance	ΔA _V		1 -	-	±1	dB
Input Inpedance	ZIN	f=1kHz	100	— ·	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_s = 10k\Omega$, A Curve	_	2.5	· —	μV
	V _{NI2}	$R_s = 10k\Omega$, $B = 22Hz \sim 22kHz$		3	-	μV
Ripple Rejection	RR	$f = 100Hz, Cx = 100\mu F$	24	30	ļ —	dB
Cutoff Frequency	fii	$A_V = -3dB$ from f=1kHz	-	200	-	kHz
		$R_{\rm L} = 16\Omega, P_{\rm O} = 125 \text{mW}$			1	

(Note) At on PC Board

5

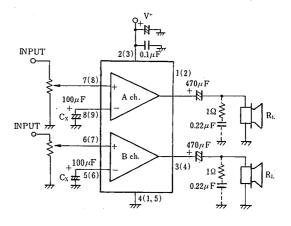
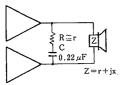

TYPICAL APPLICATION & TEST CIRCUIT

Fig.1 BTL Configuration

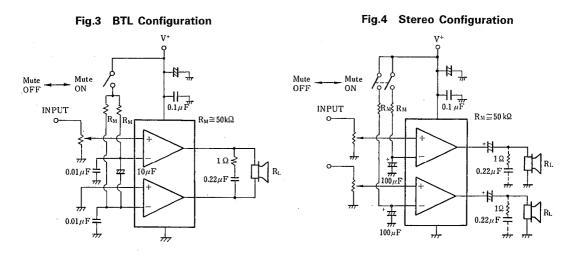
note: pin No. to D,M-Type () to S-Type

Fig.2 Stereo Configuration



-New Japan Radio Co.,Ltd.-

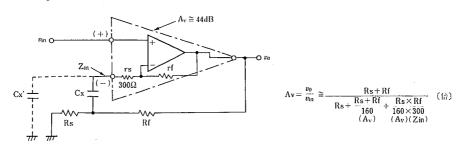
PARASITIC OSCILLATION PREVENTING CIRCUIT


Put $1\Omega + 0.22\mu$ F on parallel to load, if the load is speaker. Recommend putting 0.1μ F and more than 100μ F capacitors with good high frequency characteristics in to near ground and supply voltage pins.

In BTL operation of less than 2V supply voltage, parasitic oscillation may be occurred with $R = 1\Omega$. And so recommended R to be the same value of pure resistance(r) when it is lower than 3V.

MUTING CIRCUIT

When Mute ON, OUTPUT level saturates to GND side.


VOLTAGE GAIN REDUCTION APPLICATION EXAMPLE

(1) Outline of way to further Reduction

NJM2073 by taking in assamption, as one of OP-AMP (Gain 44dB, minus input impedance about 300Ω), to feedback from output to minus input helps to get reduction of stablized voltage Gain. Fig.5 indicates the model example.

Here is the point to be noticed that, in order to get the appropriate output Bias Voltage, it is important to keep the minus input floating as DC condition, (inserting C_x), and also that when extended too much reduction of Gain might cause Oscillation due to high band phase margin. The reduction of voltage gain is limited at around 26 dB(20 times), and when oscillation, it in necessary to attach the oscillation atopper. Please examine the C_x value accordingly to the application reguirement.

Fig.5 Model of Voltage Gain Reduction

New Japan Radio Co., Ltd.

5-39

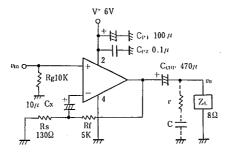

(2) The Application Example of Voltage Gain Reduction.(STEREO)

Fig.6 indicates the application example and Table 1 indicates the recommendable value of parts to be attached externally.

Table I, Applicating purpose and Recommended Value of Externally parts to be attached.					
rable r, Applicating purpose and Recommended value of Externally parts to be attached.	Tuble 1 Applies	ing numper and	Decourses	Value of Enternal II	
	rable I, Appaca	ing purpose and	Recommended	value of Externally	parts to be attached.
					p
		- · · · · · · · · · · · · · · · · · · ·			

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R _g	Plus input to be grounded	Under about	Catch the noise when much higher.
	by fixed DC	100kΩ	
Rs	AV shall be decided with Rr	·	
Rſ	AV shall be decided with R_s	About 5kΩ	The co-temperature of AV becomes higher in case when Rs is higher
			resistance. The current from output pin to GND becomes higher, in
C			case when Rs is lower resistance. (The current sinks in vain.)
Cx	Minus input to be ground-	. —	Low-band Cut off frequency (fL) is to be decided.
	ed by fixed DC		The rise time becomes longer in case that C _X is big.
C _{CUP}	Output DC Decoupling	When $R_L = 8\Omega$,	fL shall be decided by C_{CUP} and Z_{L} .
	i	More than 220μ F	
CPI	Stabilization of V ⁺	More than about Ccup	Inserting near around V ⁺ pin and GND pin.
C _{P2}	Prevention of Oscillation	More than 0.1µF	
r	n	About R _L	<i>II</i>
C	11	0.22µF	To be examined by about the resisitor volume of the speaker load.

Fig.6 STEREO Application Example.

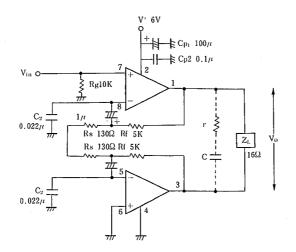
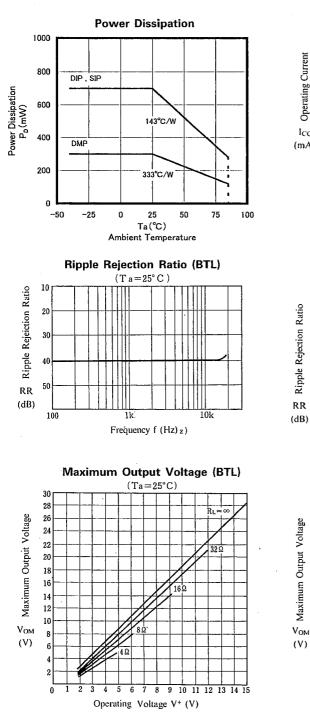
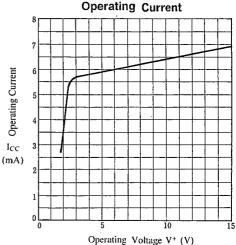
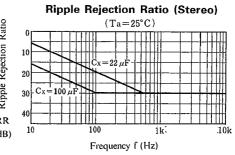

• Application for Voltage Gain Reduction (BTL)

Fig.7 indicates the application example, Table 2 shows recommended value of externally attaching parts.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
Rg	DC condition ground of plus input	Below about $10k\Omega$	Making noise when higher.
Rs	AV shall be decided with R_f		
Rf	AV shall be decided with R_s	About 5kΩ	Temperature feature to be increased accordingly as in higher AV value. When lower, to be trended of Oscillation.
Cı	Releasing minus input in to DC condition		Setting up low band Cut-off frequency (fL). More higher, the rise time become longer.
C ₂	Preventing Oscillation	About 0.02μ F	The more higher in ralue, the high band THD, due to phase slipplin to be deteriorated. When lower, to be trended of oscillation.
Срі	Stability of V ⁺ Preventing Oscillation	more than about 100μ F	Inserting near around at V ⁺ and the GND pin.
C _{P2}	Preventing Oscillation	mote than 0.1μ F	"
r	"	About RL	To be examined at around pure resister Value of speaker load.
С	"	0.22µF	


Table 2 Applicating purpose and Recommended Value of External Part

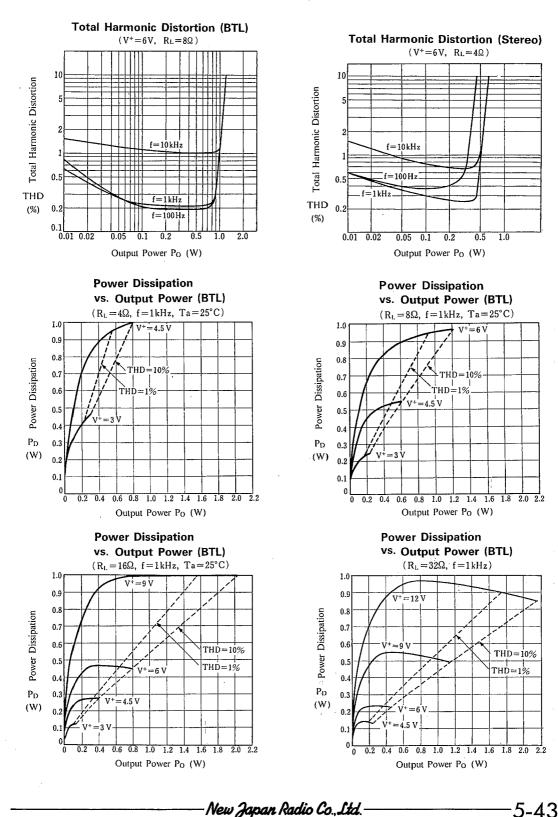

Fig.7 BTL Application



5

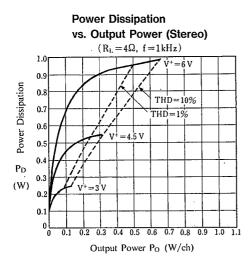
TYPICAL CHARACTERISTICS

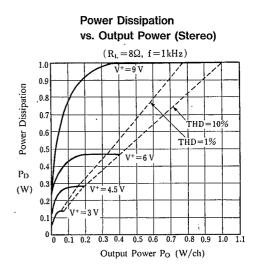
Maximum Output Voltage (Stereo)

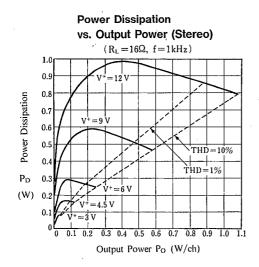


-New Japan Radio Co.,Ltd.

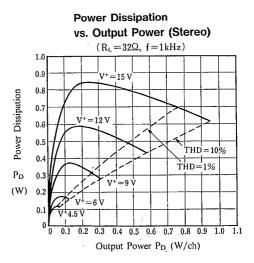
5

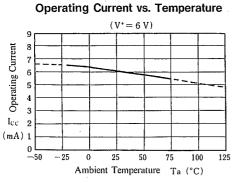

5-42

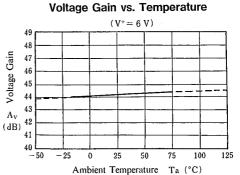

TYPICAL CHARACTERISTICS

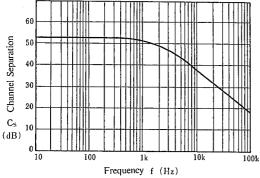


E


TYPICAL CHARACTERISTICS




-New Japan Radio Co., Ltd.


5

TYPICAL CHARACTERISTICS

Channel Separation vs. Frequency $(V^{+}=6 V, R_{s}=50k\Omega, Ta=25^{\circ}C)$

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.